#### Supervised Machine Learning **CB2030** Lukas Käll, KTH







## Supervised learning







**y:** 

disease patient

healthy patient

new patient



### Generalization: How to avoid



**X**1

y:

disease patient

healthy patient



## Separating hyperplane



H3 (green) doesn't separate the two classes. H1 (blue) does, with a small margin and H2 (red) with the maximum margin.

Example from Wikipedia

## Support Vector Machine

- Select a Maximum-margin separating hyper plane
- Soft margin, i.e. allow some data points to push their way through the margin of the separating hyperplane without affecting the end result too much
- Sometimes: transform your classification space using a kernel



## Maximum margin hyperplane



Hinge loss function:





Example from Wikipedia

### Kernels

linear problem if we select the right kernel



## • Non-linear separation problem may be transformed into a



## Strategies to validate supervised methods

- If we want to be able to detect over-fitting we need to train our method examples in a training set that is separate from the examples that we test our method with.
- If we need to optimise hyper-parameters we need to do so on yet another separate test.





# Cross Validation

#### 3-fold cross validation

| Train | Test  |  |
|-------|-------|--|
|       |       |  |
|       |       |  |
| Test  | Train |  |
|       |       |  |
|       |       |  |
| Train | Train |  |
|       |       |  |

## Nested Cross Validation



Internal X-val for LI:



Train Test

## Measuring performance of supervised classifiers

Score

| 7,5  |
|------|
| 7,2  |
| 5.0  |
| 3,8  |
| 3,7  |
| 2,5  |
| 2,4  |
| Ι,4  |
| 0,3  |
| 0,1  |
| -0,3 |
| -1,4 |
| -2,3 |
| -3,5 |
| -4,4 |
| -5,3 |
| -6,2 |
|      |

#### Example type

| + Label<br>+ Label<br>+ Label |
|-------------------------------|
| + Label<br>+ Label            |
| + Label                       |
|                               |
| - Label                       |
| + Label                       |
| + Label                       |
| + Label                       |
| - Label                       |
| + Label                       |
| - Label                       |
| + Label                       |
| - Label                       |
| - Label                       |
| + Label                       |
| - Label                       |
| - Label                       |

#### **Predicted Positive**

threshold

**Predicted Negative** 



## Performance metrics of supervised classifiers

|                  | Predicted as positive | Predicted as negative |
|------------------|-----------------------|-----------------------|
| Positive example | TP                    | FN                    |
| Negative example | FP                    | TN                    |

- TP = True positive = Correctly predicted as positive example
- FP = False positive = Incorrectly predicted as positive example
- FN = False negative = Incorrectly predicted as negative example
- TN = True negative = Correctly predicted as negative example

- Precision = TP/(TP+FP)
- Recall = Sensitivity = TP/(TP+FN)
- Specificity = TN/(TN+FP)
- FPR = FP/(FP+TN)
- TPR = TP/(TP+FN)
- FDR = FP/(FP+TP)

## Receiver operating characteristic (ROC) plot



Example from Wikipedia

## ROC score = area under the ROC curve