# Principal Component analysis 

Lukas Käll<br>lukask@kth.se



## Decomposition of a matrix

- From linear algebra, we know that we can multiply two vectors into a
matrix. $\mathbf{M}=\mathbf{u} \otimes \mathbf{v}=\mathbf{u} \mathbf{v}^{\top}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right]\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]=\left[\begin{array}{lll}u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} \\ u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} \\ u_{3} v_{1} & u_{3} v_{2} & u_{3} v_{3} \\ u_{4} v_{1} & u_{4} v_{2} & u_{4} v_{3}\end{array}\right]$.


## Decomposition of a matrix

- From linear algebra, we know that we can multiply two vectors into a

$$
\text { matrix. } \mathbf{M}=\mathbf{u} \otimes \mathbf{v}=\mathbf{u} \mathbf{v}^{\top}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} \\
u_{3} v_{1} & u_{3} v_{2} & u_{3} v_{3} \\
u_{4} v_{1} & u_{4} v_{2} & u_{4} v_{3}
\end{array}\right] .
$$

- What if we could do the opposite? I.e. given a matrix $\mathbf{M}$, what would be the vectors $\mathbf{u}$ and $\mathbf{v}$ that closest represents $\mathbf{M}$ so that $\mathbf{M} \approx \mathbf{u v}^{\top}$. This is in essence what you do with principal component analysis (PCA).


## Conspicuous Example

- See notebook


## More principal components to your PCA

- Once you remove the principal components from a matrix $\mathbf{M}$ the remaining residues,i.e. $\mathbf{M}-\mathbf{u}^{(1)} \mathbf{v}^{(1) \mathbf{T}}$ might in its turn be decomposed into vectors. I.e. we can calculate the vectors $\mathbf{u}^{(2)}$ and $\mathbf{v}^{(2)}$ that best describe the matrix $\mathbf{M}-\mathbf{u}^{(1)} \mathbf{v}^{(1) \mathbf{T}}$. We call these the second principal components, and the first are called first principal components.


## More principal components to your PCA

- Once you remove the principal components from a matrix $\mathbf{M}$ the remaining residues, i.e. $\mathbf{M}-\mathbf{u}^{(1)} \mathbf{v}^{(1) \mathbf{T}}$ might in its turn be decomposed into vectors. I.e. we can calculate the vectors $\mathbf{u}^{(2)}$ and $\mathbf{v}^{(2)}$ that best describe the matrix $\mathbf{M}-\mathbf{u}^{(1)} \mathbf{v}^{(1) \boldsymbol{T}}$. We call these the second principal components, and the first are called first principal components.
- In this manner we can derive as many principal components as there are rows or columns (which ever is the lowest number) in $\mathbf{M}$. In most applications, we settle for two such components.


## Thanks!

